The putative plasma membrane Na(+)/H(+) antiporter SOS1 controls long-distance Na(+) transport in plants.

نویسندگان

  • Huazhong Shi
  • Francisco J Quintero
  • Jose M Pardo
  • Jian-Kang Zhu
چکیده

The salt tolerance locus SOS1 from Arabidopsis has been shown to encode a putative plasma membrane Na(+)/H(+) antiporter. In this study, we examined the tissue-specific pattern of gene expression as well as the Na(+) transport activity and subcellular localization of SOS1. When expressed in a yeast mutant deficient in endogenous Na(+) transporters, SOS1 was able to reduce Na(+) accumulation and improve salt tolerance of the mutant cells. Confocal imaging of a SOS1-green fluorescent protein fusion protein in transgenic Arabidopsis plants indicated that SOS1 is localized in the plasma membrane. Analysis of SOS1 promoter-beta-glucuronidase transgenic Arabidopsis plants revealed preferential expression of SOS1 in epidermal cells at the root tip and in parenchyma cells at the xylem/symplast boundary of roots, stems, and leaves. Under mild salt stress (25 mM NaCl), sos1 mutant shoot accumulated less Na(+) than did the wild-type shoot. However, under severe salt stress (100 mM NaCl), sos1 mutant plants accumulated more Na(+) than did the wild type. There also was greater Na(+) content in the xylem sap of sos1 mutant plants exposed to 100 mM NaCl. These results suggest that SOS1 is critical for controlling long-distance Na(+) transport from root to shoot. We present a model in which SOS1 functions in retrieving Na(+) from the xylem stream under severe salt stress, whereas under mild salt stress it may function in loading Na(+) into the xylem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Na(+)/H(+) exchanger SOS1 controls extrusion and distribution of Na(+) in tomato plants under salinity conditions.

Maintaining a high K(+)/Na(+) ratio in the cell cytosol, along with the transport processes implicated in the xylem and phloem loading/unloading of Na(+) in plants (long-distance transport) are key aspects in plant salt tolerance. The Ca(2+)-dependent SOS pathway regulating Na(+) and K(+) homeostasis and long-distance Na(+) transport has been reported in Arabidopsis. However, Arabidopsis might ...

متن کامل

The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter.

In Arabidopsis thaliana, the SOS1 (Salt Overly Sensitive 1) locus is essential for Na(+) and K(+) homeostasis, and sos1 mutations render plants more sensitive to growth inhibition by high Na(+) and low K(+) environments. SOS1 is cloned and predicted to encode a 127-kDa protein with 12 transmembrane domains in the N-terminal part and a long hydrophilic cytoplasmic tail in the C-terminal part. Th...

متن کامل

Protection of plasma membrane K+ transport by the salt overly sensitive1 Na+-H+ antiporter during salinity stress.

Physicochemical similarities between K(+) and Na(+) result in interactions between their homeostatic mechanisms. The physiological interactions between these two ions was investigated by examining aspects of K(+) nutrition in the Arabidopsis salt overly sensitive (sos) mutants, and salt sensitivity in the K(+) transport mutants akt1 (Arabidopsis K(+) transporter) and skor (shaker-like K(+) outw...

متن کامل

Co-overexpressing a Plasma Membrane and a Vacuolar Membrane Sodium/Proton Antiporter Significantly Improves Salt Tolerance in Transgenic Arabidopsis Plants

The Arabidopsis gene AtNHX1 encodes a vacuolar membrane-bound sodium/proton (Na(+)/H(+)) antiporter that transports Na(+) into the vacuole and exports H(+) into the cytoplasm. The Arabidopsis gene SOS1 encodes a plasma membrane-bound Na(+)/H(+) antiporter that exports Na(+) to the extracellular space and imports H(+) into the plant cell. Plants rely on these enzymes either to keep Na(+) out of ...

متن کامل

The plasma membrane Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis.

The adverse effects of high salt on plants include Na(+) toxicity and hyperosmotic and oxidative stresses. The plasma membrane-localized Na(+)/H(+) antiporter SOS1 functions in the extrusion of toxic Na(+) from cells and is essential for plant salt tolerance. We report here that, under salt or oxidative stress, SOS1 interacts through its predicted cytoplasmic tail with RCD1, a regulator of oxid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 14 2  شماره 

صفحات  -

تاریخ انتشار 2002